Molecular Diagnosis of Gastrointestinal Tumors

Zoltan Szentirmay

National Institute of Oncology
Center of Surgical and Molecular Tumor Pathology

EEA and Norwegian Financial Mechanisms in Hungary, Development of joint Hungarian and Norwegian strategy for cancer treatment by molecular methods. (Prevention, early diagnosis and therapy)
Colorectal cancers
Patients and Methods

• Totally 634 surgically resected colorectal cancer samples.
• Database construction.
• Isolation of DNA form FFPE tumor samples by the assistance of MagNa Pure Compact machine.
• PCR-based microsatellite instability test according to Dietmaier and Hofstadter (Lab. Invest., 81:1453-1456, 2001).
• Real-time PCR amplification and melting point analysis of KRAS exon 2 and BRAF exon 15 gene regions.
• DNA sequence analysis of amplicons.
Five-year Survival Rate of Gastic and Colorectal Cancer Based on the National Cancer Registry

Genetic classification of colorectal cancers

MMR negative phenotype
- Sporadic CrC develops via "polyp-cancer" sequence
 - Microsatellite stability (MSS)
 - Chromosomal instability

MMR positive phenotype
- Hereditary non-polyposis CrC (HNPCC)
 - Chromosomal instability
 - Microsatellite instability (MSI-H)
- Sporadic CRC develops due to the CpG methylation of hMLH1 (CIMP+)
 - Chromosomal stability
Kaplan-Meier probability survival of CrC according to the TNM-based clinical staging

\[p = 0.0000 \]
Correlation of TNM-based clinical stage and the genotype of CrC at the time of diagnosis

<table>
<thead>
<tr>
<th>Clinical stage</th>
<th>HNPCC MSI-H</th>
<th>CIMP+ MSI-H</th>
<th>Polyp-Cancer MSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 + 2 (%)</td>
<td>69.8</td>
<td>66.7</td>
<td>38.4</td>
</tr>
<tr>
<td>Stage 3 + 4 (%)</td>
<td>30.2</td>
<td>33.3</td>
<td>61.6</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Kaplan-Meier probability survive of CrC according to the genotype

- HNPCC
- Sporadic MLH1+, MSI-H
- Sporadic MSS

P = 0.0002
Localization of genetically different CRCs

<table>
<thead>
<tr>
<th>Colorectal cancer</th>
<th>Localization %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Right half-colon</td>
<td>Left half-colon & rectum</td>
</tr>
<tr>
<td>Sporadic CIMP+ MSI-H</td>
<td>100.0</td>
<td>-</td>
</tr>
<tr>
<td>HNPCC MSI-H</td>
<td>65.1</td>
<td>34.9</td>
</tr>
<tr>
<td>Sporadic MSS</td>
<td>21.9</td>
<td>78.1</td>
</tr>
</tbody>
</table>

P = 0.000
Significant genetic alterations influencing the therapy response of colorectal cancers

1. KRAS or BRAF mutation inhibits the therapeutic effects of anti-EGFR antibodies.
2. The 5-fluorouracil-based chemotherapy has no any effects on microsatellite instable (MSI-H) carcinoma.
Enhanced EGFR sensitivity

Ligand-dependent gene activation

Enhanced EGF signal
Autocrine receptor stimulation

The receptor function is blocked
Anti-EGFR mab

There is no EGFR signal

PI3K
PTEN

PI3K
mTOR
AKT

angiogenesis, cell proliferation, survive

RAS → BRAF → MEK → ERK

2. exon 12/13 codon or 15. exon V600E (GTG → GAG)

mutation

uncontrolled cell proliferation

TGFβ → p21 → cyclin D → CDK 4/6

unregulated cell cycle

MSI

There is no EGFR signal

Enhanced EGFR signal
Disease-process:
In spite of the anti-EGFR treatment liver metastasis developed.
The patient died within two years.
Frequency distribution of gain-of-function mutations in codon 12 and codon 13 of KRAS gene (184 tumor samples)
Localization of KRAS and BRAF positive CrCs

<table>
<thead>
<tr>
<th>Genetical state</th>
<th>Incidence %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Right half-colon</td>
<td>Left half colon & rectum</td>
</tr>
<tr>
<td>KRAS mut</td>
<td>24.2</td>
<td>75.8</td>
</tr>
<tr>
<td>BRAF mut</td>
<td>66.7</td>
<td>32.3</td>
</tr>
</tbody>
</table>

P = 0.000
Frequency distribution of KRAS and BRAF mutations in hereditary and sporadic CrC

<table>
<thead>
<tr>
<th>CrC types</th>
<th>KRAS mut %</th>
<th>BRAF mut %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNPCC MSI-H</td>
<td>39.5</td>
<td>-</td>
</tr>
<tr>
<td>Sporadic CIMP+, MSI-H</td>
<td>8.4</td>
<td>52.8</td>
</tr>
<tr>
<td>Sporadic MSS</td>
<td>45.9</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Kaplan-Meier survival function of CrCs according to the KRAS mutation state

P = 0.17
Kaplan-Meier survival function of CrCs according to the BRAF mutation state

- BRAF wt
- BRAF mutant

p = 0.0000
Gastrointestinal stromal tumor (GIST)
Study Population

- No. of tumor samples investigated: 72
- Sex: Male 38, Female 34
- Patients follow up period: between 17 years and 6 mounts
- Age distribution:
Methods

• Collection of formalin-fixed and paraffin-embedded tumor samples and database construction.
• CD117 and CD34 immunohistochemistry and pathological assessment of the tumor risk categories.
• Isolation of DNA form FFPE tumor samples by the assistance of MagNa Pure Compact machine.
• Real-time PCR amplification and melting point analysis of c-kit exon 9, exon 11, and PDGFRA exon 12 and exon 18 gene regions.
• High resolution capillary gel electrophoresis analysis of amplicons.
• High resolution melting analysis of c-kit exon 11 using LightCycler 480 PCR system to analyze genetic variations in PCR amplicons.
• DNA sequence analysis of amplicons.
High Resolution Melting

Deletion (others)
Point mut (red)
Wt (blue)
C-kit exon 11
Comparison of the Mutation Analysis Methods

<table>
<thead>
<tr>
<th>Real-time PCR amplification and melting point analysis & sequencing</th>
<th>High Resolution Melting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wt</td>
</tr>
<tr>
<td>Wt</td>
<td>**********</td>
</tr>
<tr>
<td>Point mut</td>
<td>**********</td>
</tr>
<tr>
<td>Deletion</td>
<td>**********</td>
</tr>
</tbody>
</table>

Asterisks represent tumor samples
Localization of GIST
(No = 72)

<table>
<thead>
<tr>
<th>Localization</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esophagus</td>
<td>2.8</td>
</tr>
<tr>
<td>Stomach</td>
<td>48.6</td>
</tr>
<tr>
<td>Small Intestine</td>
<td>26.4</td>
</tr>
<tr>
<td>Large Intestine</td>
<td>11.1</td>
</tr>
<tr>
<td>Extra-intestinal</td>
<td>6.9</td>
</tr>
<tr>
<td>Metastasis</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Kaplan-Meier probability survival function

p = 0.0076
Pathological Risk Grouping of GIST (No = 72)

<table>
<thead>
<tr>
<th>RISK GROUPS</th>
<th>FREQUENCY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk GIST</td>
<td>40.3</td>
</tr>
<tr>
<td>High risk GIST</td>
<td>59.7</td>
</tr>
</tbody>
</table>

Kaplan-Meier probability survival function

p = 0.0052
Summary of Significant Genetik Alterations in GIST

GIST, AML

GIST

Kit

Extracellular domain (exon 9)

Juxtmembrane domain (exon 11)

Ligand-binding domain

PDGFRA

Juxtmembrane domain (exon 12)

Tyrosine kinase II domain (exon 18)

Imatinib (Gleevec) sensitive mutations

Gleevec resistant mutations

Imatinib (Gleevec) sensitive mutations
Significant mutations in GIST 72 tumors

<table>
<thead>
<tr>
<th>Gleevec sensitive mutations, c-kit</th>
<th>Gleevec resistance mutation, PDGFRA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 9 point m. & dupl</td>
<td>Exon 11 del</td>
<td></td>
</tr>
<tr>
<td>5 (6.9%)</td>
<td>31 (43.1%)</td>
<td></td>
</tr>
<tr>
<td>Exon 11 point mut</td>
<td>15 (20.8%)</td>
<td></td>
</tr>
<tr>
<td>Exon 18 point mut & delins</td>
<td>8 (11.1%)</td>
<td></td>
</tr>
<tr>
<td>59 (81.9%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C-Kit exon 11
Highly Gleevec sensitive deletion mutations

Types of deletion in 14 tumor samples

cDNA

1650
ACCCATGTATGAAGTACAGTGGAAGGTGTTGTGAGGAGATAATGGAAACAAATTATGTTTACATAGACCCACACAACCTTCC
A---A
ACCCATGTATGAAGTACA------------------GAGGAGATAATGGAAACAAATTATGTTTACATAGACCCACACAACCTTCC
ACCCATGTATGAAGTACAG-----TGTTGAGGAGATAATGGAAACAAATTATGTTTACATAGACCCACACAACCTTCC
ACCCATGTATGAAGTACAG-----GTTGTTGAGGAGATAATGGAAACAAATTATGTTTACATAGACCCACACAACCTTCC

1730
GG

C.1735-1737
C-Kit exon 11
Highly Gleevec sensitive point mutations

Mutation pattern (14 tumors)

c.1669T c.1669T
1650 c.1666C c.1676T c.1727T

> T
 > C
 > C
 > A
 > A

> A
 > G
 > C

> A
 > A
 > A

> C
> C
C-Kit exon 9
Moderately Gleevec sensitive point mutations and SNPs

9 tumors (5 mutations, 4 SNPs)

c.1357T >C
1354
c.1383A >G snp
c.1391C >G snp
c.1414C >T snp
c.1445C >T
1431
c.1486G >A snp
c.1497G >A snp
c.1504-1509 dup GCCTAT
Detection and Frequency of Gene Alterations in exon 18 of PDGFRA

<table>
<thead>
<tr>
<th>GENE ALTERATION</th>
<th>FREQUENCY %</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.2525A>T (p.D842V) Delins</td>
<td>9.7 1.4</td>
</tr>
<tr>
<td>c.2472C>T snp</td>
<td>11.1</td>
</tr>
<tr>
<td>c.2442T>C snp</td>
<td>2.8</td>
</tr>
<tr>
<td>c.2526C>T snp</td>
<td>1.4</td>
</tr>
<tr>
<td>c.2538T>C snp</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Detection of p.D842V mutation by real-time PCR and melting point analysis.

![Graph showing fluorescence vs temperature](image_url)
Correlation Between the Mutation Status of c-kit exon 9 & 11 and the Metastatic Potential of GIST

<table>
<thead>
<tr>
<th>C-kit</th>
<th>Metastasis</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Wild type</td>
<td>76.2</td>
<td>23.8</td>
</tr>
<tr>
<td>Exon 9 & 11 point mut</td>
<td>60.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Exon 11 deletion</td>
<td>25.8</td>
<td>74.2</td>
</tr>
</tbody>
</table>

Pearson chi-square \[P = 0.0010 \]

The c-kit mutations promote the metastatic tendency of GIST
MP487/08, 55-year-old male with a 42x35x31 mm abdominal mass and a 22 mm in diameter nodule in the 5th segment of liver. Core biopsy from the abdominal mass and liver nodule.
cKIT exon 11: 35 bp deletion

Mutant allele

Wt allele

Heterodimers

High resolution capillary gel electrophoresis
55 year-old male, at the time of diagnosis

8 months after Gleevec treatment
Kaplan-Meier Probability Function of Gleevec Sensitive Mutation Bearing GIST Versus other Subtype of GIST

- C-kit exon 9 & 11 mutant GIST (51 tumors)
- C-kit wt and PDGFRA resistance mutant GIST (21 tumors)